Logo do repositório
Comunidades & Coleções
Tudo no DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Entrar
Esqueceu sua senha?
  1. Início
  2. Pesquisar por Autor

Navegando por Autor "GOMES, Paulo Cesar Rocha"

Filtrar resultados informando as primeiras letras
Agora exibindo 1 - 2 de 2
  • Resultados por Página
  • Opções de Ordenação
  • Imagem de Miniatura
    Item
    Aplicação da Manutenção Autônoma Proporcionando Ganho de Produção: Estudo de Caso no Polo Industrial de Manaus
    (Universidade Federal do Pará, 2012) GOMES, Paulo Cesar Rocha; OLIVEIRA, Roberto Célio Limão de
    Globalization has forced companies to continuously seek improvements in their processes to remain competitive. Maintenance, especially autonomous maintenance, plays a crucial role in this context, aiming to reduce production line stoppages and increase productivity. This work proposes the application of autonomous maintenance in a refrigerant gas leak detection system in an air conditioning production line at the Manaus Industrial Pole. The study identified that most stoppages were caused by dirt in the system filters and proposed simple solutions, such as regular cleaning and the installation of pre-filters, which reduced failures by more than 85%. Autonomous maintenance proved effective by involving operators in preventive maintenance, increasing equipment availability, and reducing costs.
  • Imagem de Miniatura
    Item
    Diferentes métodos para a análise da previsão do índice de emissões de uma usina geradora de eletricidade
    (INSTITUTO DE TECNOLOGIA, 2014) GOMES, Paulo Cesar Rocha; RODRIGUEZ, Jorge Laureano Moya; LEITE, Jandecy Cabral.; MAGALHÃES, Edilson Marques
    The study evaluated different methods for forecasting the emission index of a thermoelectric power plant, using data from 2001 to 2013 and projecting values until 2020. The ARIMA, exponential, and logarithmic methods were applied, supported by tools such as Excel and SPSS20. Results showed that the ARIMA method provides more accurate forecasts for long and well-behaved time series, while linear and logarithmic methods are suitable for clear growth or decline trends. The study concluded that the choice of method depends on data characteristics and analysis objectives.

DSpace software copyright © 2002-2025 LYRASIS Responsabilidade técnica - Bibliotecário: Luiz Fernando Almeida CRB11/1041

  • Política de privacidade
  • Termos de uso
  • Enviar uma sugestão
Logo do repositório COAR Notify