Logo do repositório
Comunidades & Coleções
Tudo no DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Entrar
Esqueceu sua senha?
  1. Início
  2. Pesquisar por Autor

Navegando por Autor "PARÁ, Júlio Leite"

Filtrar resultados informando as primeiras letras
Agora exibindo 1 - 1 de 1
  • Resultados por Página
  • Opções de Ordenação
  • Imagem de Miniatura
    Item
    Otimização de rotas de logistica reversa de pneus inservíveis com algoritmo genético na cidade de Manaus
    (Instituto de Tecnologia e Educação Galileo da Amazônia, 2022-11-30) PARÁ, Júlio Leite; NASCIMENTO, Manoel Henrique Reis; http://lattes.cnpq.br/0850846128967798
    The large amount of solid waste generated in urban centers, which stand out the unserviceable tires, is a problem that can be optimized with the application of the genetic algorithm linked to the logistic route through solutions of vehicle routing problems that aim to reduce the distance and consequently the cost of collecting the tyres. This study consists of implementing a solution with the Metaheuristic Genetic Algorithm (GA) to optimize the solid waste collection routes (unserviceable tires) of a collection company in the city of Manaus, aiming to reduce the cost of collection trucks, from the location of the company , passing through the stations or collection points to the waste storage shed, considering the actual data from the Municipal Public Cleaning Secretariat (SEMULSP) of Manaus. The methodology involved the implementation of the Genetic Algorithm (GA) in the optimization of the collection routes performed by the trucks of a collection company in the city of Manaus, using a computer with an Intel® Core I5™ processor, 8Gb of RAM and Windows 10 operating system , MATLAB software version R2022a, Bing Maps technology, in addition to data from the outsourced company (transporter) contracted by the Municipal Public Cleaning Secretariat – SEMULSP provided through the Special Commission for Disclosure of the Public Cleaning Policy – CEDOLP. The results pointed to the model of optimized routes with the total time of routes 1 and 2, considering the stop time for tire collection was 5 hours and 48 minutes. It is concluded that the implementation of the Metaheuristic Genetic Algorithm (GA) that allows the optimization of solid waste collection routes (unserviceable tires).

DSpace software copyright © 2002-2025 LYRASIS Responsabilidade técnica - BibITEGAM

  • Política de privacidade
  • Termos de uso
  • Enviar uma sugestão
Logo do repositório COAR Notify