Logo do repositório
Comunidades & Coleções
Tudo no DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Entrar
Esqueceu sua senha?
  1. Início
  2. Pesquisar por Autor

Navegando por Autor "WASCHINGTON, Adriana Carneiro"

Filtrar resultados informando as primeiras letras
Agora exibindo 1 - 1 de 1
  • Resultados por Página
  • Opções de Ordenação
  • Imagem de Miniatura
    Item
    Smart energy: aplicação do sistema fotovoltaico utilizando algoritmos genéticos para tomada de decisão na Indústria 4.0
    (Instituto de Tecnologia e Educação Galileo da Amazônia, 2024) WASCHINGTON, Adriana Carneiro; SILVA, Simone da
    The global energy transition and the need for energy efficiency in industrial environments are driven by the search for sustainability and the reduction of environmental impacts. This work addresses the application of genetic algorithms in the management of photovoltaic systems within the context of Industry 4.0, highlighting the concept of Smart Energy. The main objective is to investigate the benefits and impacts of this approach on energy efficiency, environmental sustainability, and the reduction of operating costs at the Manaus Industrial Estate (PIM). To achieve the objectives, methods based on computer simulation and analysis of real cases were used. The research included the modeling and development of genetic algorithms capable of optimizing variables such as energy generation, storage, and consumption in photovoltaic systems. Data was collected based on local climatic conditions, energy demand profiles, and industrial operating parameters. The results indicated that the genetic algorithms enabled significant gains in energy efficiency, with an average reduction of 20% in energy waste and 15% in operating costs. In addition, the model developed proved to be effective in adapting to climate variations and industrial demands, reducing dependence on non-renewable sources and greenhouse gas emissions. The conclusion is that integrating photovoltaic systems with genetic algorithms is a promising solution for energy management in Industry 4.0, promoting sustainability and industrial competitiveness, especially in regions with high solar incidence like the Amazon. The research highlights the relevance of technological innovation in the transition to a low-carbon economy.

DSpace software copyright © 2002-2025 LYRASIS Responsabilidade técnica - BibITEGAM

  • Política de privacidade
  • Termos de uso
  • Enviar uma sugestão
Logo do repositório COAR Notify