Artigos

URI permanente para esta coleçãohttps://rigalileo.itegam.org.br/handle/123456789/5

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 2 de 2
  • Imagem de Miniatura
    Item
    Digital technologies review for manufacturing processes
    (Instituto de Tecnologia e Educação Galileo da Amazônia, 2021-03-31) PARENTE, Ricardo Silva; UHLMANN, Iracyanne Retto
    It is apparent the industrial processes transformations caused by industry 4.0 are in advance in some countries like China, Japan, Germany and United States. But, in return, the developing countries, as the emergent Brazil, seem like to have a long way to achieve digital era. Considering manufacturing processes as the starting point the rise of industry 4.0, this research aims to show a review about the most important technologies used in smart manufacturing, including the main challenges to implement it at Brazil. The papers were collected from Web of Science (WoS), comprising 114 articles and 2 books to underpin this study. This exploratory research resulted in the presentation of some challenges faced by Brazilian industry to join the new industrial era, such as poor technological infrastructure, besides lack of investment in technologies and training of qualified people. Even though the primary motivation of this research was to present a panorama of smart manufacturing for Brazil, this study results contributes to the most of emergent countries, bringing together general concepts and addressing practical applications developed by several researchers from the international academic community.
  • Imagem de Miniatura
    Item
    Computational meta-heuristics based on Machine Learning to optimize fuel consumption of vessels using diesel engines
    (Instituto de Tecnologia e Educação Galileo da Amazônia, 2021-05-01) SIQUEIRA JUNIOR, Paulo Oliveira; NASCIMENTO, Manoel Henrique Reis; SILVA, Ítalo Rodrigo Soares; PARENTE, Ricardo Silva; FONSECA JUNIOR, Milton; LEITE, Jandecy Cabral;
    With the expansion of means of river transportation, especially in the caseof small and medium-sized vessels that make routes of greater distances, the cost of fuel, if not taken as an analysis criterion for a larger profit margin, is considered to be a primary factor , considering that the value of fuel specifically diesel to power internal combustion machines is high. Therefore, the use of tools that assist in decision making becomes necessary, as is the case of the present research, which aims to contribute with a computational model of prediction and optimization of the best speed to decrease the fuel cost considering the characteristics of the SCANIA 315 machine. propulsion model, of a vessel from the river port of Manaus that carries out river transportation to several municipalities in Amazonas. According to the results of the simulations, the best training algorithm of the Artificial Neural Network (ANN) was the BFGS Quasi-Newton considering the characteristics of the engine for optimization with Genetic Algorithm (AG).