PPG.EGPSA/ITEGAM

URI permanente desta comunidadehttps://rigalileo.itegam.org.br/handle/123456789/1

A comunidade dispõe da produção técnica e científica do Programa de Pós-graduação em Engenharia, Gestão de Processos, Sistema e Ambiental (PPG.EGPSA) do Instituto de Tecnologia e Educação Galileo da Amazônia (ITEGAM), fruto da atividade de pesquisa e desenvolvimento (P&D). É possível acessar os trabalhos de conclusão do programa de pós-graduação, artigos e livros vinculados a pesquisa, desenvolvimento, inovação e extensão.

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 2 de 2
  • Imagem de Miniatura
    Item
    Sinergia entre Modelagem 3D e Redes Neurais Artificiais na Otimização da Manufatura Aditiva no Contexto da Indústria 4.0
    (Instituto de Tecnologia e Educação Galileo da Amazônia, 2025) DIAS, Jonathan Oliveira; ALENCAR, David Barbosa de
    Additive manufacturing (AM), widely known as 3D printing, emerges as one of the key technologies of Industry 4.0, enabling the production of parts with high geometric complexity and customization. This study investigates how the integration between 3D modeling and Artificial Neural Networks (ANNs) enhances the efficiency and quality of AM processes. 3D modeling supports detailed simulations of material behavior and manufacturing processes, while ANNs provide predictive analysis and learning from large data volumes, allowing automatic and dynamic adjustments to parameters such as speed, temperature, and fill patterns. The results show significant improvements in reliability, waste reduction, and energy consumption, aligning production with sustainability demands.
  • Imagem de Miniatura
    Item
    OTIMIZAÇÃO DE PROCESSOS DE MANUFATURA ADITIVA POR MEIO DA MODELAGEM 3D E SIMULAÇÕES NA INDUSTRIA 4.0
    (Instituto de Tecnologia e Educação Galileo da Amazônia, 2024) DIAS, Jonathan Oliveira; VIEIRA JUNIOR, Milton
    The 4th industrial revolution, also known as Industry 4.0, characterized by the integration of digital technologies, has significantly transformed production processes. Among these innovations, additive manufacturing stands out as a strategic alternative to traditional subtractive methods, offering greater flexibility and efficiency in material usage. This study explores the optimization of additive manufacturing processes using 3D modeling and computer simulation in the context of Industry 4.0. Additive manufacturing, also known as 3D printing, enables the production of more complex parts at lower costs by eliminating inventory storage requirements and manufacturing steps. However, challenges such as quality control, scalability, and standardization still need to be addressed. The research employs CAD/CAE/CAM tools, 3D modeling, and finite element method (FEM) simulations to predict the structural behavior of parts and adjust parameters such as print orientation and fill patterns. The integration of Industry 4.0 technologies with digital tools can reduce costs, improve quality, and increase flexibility, meeting the demands of an increasingly competitive and sustainable market.