PPG.EGPSA/ITEGAM

URI permanente desta comunidadehttps://rigalileo.itegam.org.br/handle/123456789/1

A comunidade dispõe da produção técnica e científica do Programa de Pós-graduação em Engenharia, Gestão de Processos, Sistema e Ambiental (PPG.EGPSA) do Instituto de Tecnologia e Educação Galileo da Amazônia (ITEGAM), fruto da atividade de pesquisa e desenvolvimento (P&D). É possível acessar os trabalhos de conclusão do programa de pós-graduação, artigos e livros vinculados a pesquisa, desenvolvimento, inovação e extensão.

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 2 de 2
  • Item
    Arquitetura computacional para controle de monitoramento de qualidade de energia utilizando ferramentas de inteligência artificial focado na Indústria 4.0 com integração de energias renováveis
    (Instituto de Tecnologia e Educação Galileo da Amazônia, 2024) KAMIO, Edson; GUIMARÃES, Gil Eduardo; LEITE, Jandecy Cabral; ALMEIDA, Anderson Alexandre Silva de; MONTEIRO, Odilon Bentes; RIBEIRO, Paulo Francisco da Silva; NASCIMENTO FILHO, Alarico Gonçalves do; LEITE, Jandecy Cabral
    The quality of electrical energy (QEE) is crucial to the efficiency of industrial systems, especially in Industry 4.0. This research proposes a computer architecture for QEE control and monitoring, integrating renewable sources and artificial intelligence (AI). The proposal uses AI for predictive monitoring and dynamic control of capacitor banks and harmonic filters, mitigating issues such as inadequate power factor and high total harmonic distortion. Additionally, the system strategically integrates solar energy to maximize cost savings and sustainability in the industrial environment. An innovative software solution, utilizing the IMS Smart Cap 485 device via the Modbus-RTU protocol, collects and analyzes electrical data, processing it with deep learning (LSTM) and optimization (GA) algorithms. Interactive dashboards developed in Python provide detailed visualizations to predict problems and make strategic decisions, optimizing energy efficiency and reducing dependence on conventional sources.
  • Imagem de Miniatura
    Item
    Aplicação de Tecnologias de Inteligência Artificial e IoT na Modernização da Inspeção de Placas de Circuito Impresso: Um Estudo no Polo Industrial de Manaus
    (Instituto de Tecnologia e Educação Galileo da Amazônia, 2024) SOARES, Karen Kettelen Souza; GUIMARÃES, Gil Eduardo; MARINELLI FILHO, Nelson; SCHMIDT, Fabricio Carlos; CORREA, Geraldo Nunes; LEITE, Jandecy Cabral
    The digital transformation driven by Industry 4.0 has fostered the integration of technologies such as the Internet of Things (IoT) and Artificial Intelligence (AI) to revolutionize industrial processes. This study presents the development of an innovative Automated Optical Inspection (AOI) solution that combines deep learning algorithms, IoT, and cyber-physical systems to identify and classify defects in printed circuit boards (PCBs). The methodology covered the design of dedicated hardware, specialized software, and the creation of an interactive dashboard for real-time inspection data visualization. The results demonstrated significant advances in process efficiency and accuracy, as well as a notable reduction in failure rates. This work reinforces the potential of adopting Industry 4.0 technologies for the modernization of the Brazilian electronics industry, especially in the Manaus Industrial Hub, highlighting competitive advantages and pathways to overcoming technological challenges in the sector.