PPG.EGPSA/ITEGAM

URI permanente desta comunidadehttps://rigalileo.itegam.org.br/handle/123456789/1

A comunidade dispõe da produção técnica e científica do Programa de Pós-graduação em Engenharia, Gestão de Processos, Sistema e Ambiental (PPG.EGPSA) do Instituto de Tecnologia e Educação Galileo da Amazônia (ITEGAM), fruto da atividade de pesquisa e desenvolvimento (P&D). É possível acessar os trabalhos de conclusão do programa de pós-graduação, artigos e livros vinculados a pesquisa, desenvolvimento, inovação e extensão.

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 3 de 3
  • Imagem de Miniatura
    Item
    Sistema inteligente para detecção de falhas utilizando algoritmo de Árvore de Decisão
    (Instituto de Tecnologia e Educação Galileo da Amazônia, 2025) PENEDO, Jorge Eduardo Santos; PALADINI, Edson Pacheco; SILVA, Carlos Américo de Souza; LEITE, Jandecy Cabral
    Python-based software employing Decision Tree algorithms to detect faults in industrial or computational systems. Designed for Industry 4.0 environments, it aims to enhance operational reliability and enable automated diagnostics.
  • Imagem de Miniatura
    Item
    Sistema inteligente para detecção de falhas utilizando algoritmo de máquina de vetores de suporte – SVM
    (Instituto de Tecnologia e Educação Galileo da Amazônia, 2025) SILVA, Carlos Américo de Souza; PALADINI, Edson Pacheco; PENEDO, Jorge Eduardo Santos; LEITE, Jandecy Cabral
    Python-based software using Support Vector Machine (SVM) algorithms for fault detection systems. Aimed at intelligent automation in industrial settings, the software enhances predictive decision-making accuracy in the context of Industry 4.0.
  • Imagem de Miniatura
    Item
    Sistema inteligente para classificação de falhas na manufatura de placas utilizando algoritmo de Machine Learning KNN
    (Instituto de Tecnologia e Educação Galileo da Amazônia, 2025) PENEDO, Jorge Eduardo Santos; PALADINI, Edson Pacheco; SILVA, Carlos Américo de Souza; LEITE, Jandecy Cabral
    Python-based software using the K-Nearest Neighbors (KNN) machine learning algorithm to classify failures in PCB manufacturing lines. Designed for Industry 4.0 environments, it aims to improve predictive failure detection accuracy in automated industrial contexts.