Artigos

URI permanente para esta coleçãohttps://rigalileo.itegam.org.br/handle/123456789/219

Artigos produzidos de convênios e parcerias com IES

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 4 de 4
  • Imagem de Miniatura
    Item
    Limestone Calcination Optimization of Vertical Container Oven
    (INSTITUTO DE TECNOLOGIA, 2015) SAGASTUME GUTIÉRREZ, Alexis; Manoel Henrique Reis Nascimento
    Producing lime demands high energy consumption and leads to significant CO₂ emissions. This study aims to establish a methodology to optimize limestone calcination in standard vertical kilns in Cuba, considering lime quality’s impact on the economic contribution margin. Tools such as exergy analysis and genetic algorithms were used. Major inefficiencies identified include combustion irreversibilities, heat transfer losses, and exergy loss through exhaust gases. Applying the methodology reduced energy consumption by 4.6% and improved lime quality by 5.3%.
  • Imagem de Miniatura
    Item
    Tube and Shell heat exchanger optimization taking into account Mechanical restrictionsv
    (INSTITUTO DE TECNOLOGIA, 2015) RODRÍGUEZ, Maida Bárbara Reyes; RODRÍGUEZ, Jorge L. Moya; FONTICIELLA, Oscar Cruz; DONÉSTEVEZ, Eduardo Migeu Fírvida; Prof Dr. Davi do Socorro Barros Brasil
    The study introduces a multi-objective optimization procedure for shell-and-tube heat exchangers, incorporating thermal, hydraulic, and mechanical constraints to ensure equipment durability. Implemented in MATLAB using genetic algorithms (NSGA-II), the method optimizes design variables while adhering to mechanical standards. Results validate the approach against literature examples, highlighting cost and performance improvements.
  • Imagem de Miniatura
    Item
    Metodología propuesta para la optimización multicriterio mediante algoritmos genéticos en las aplicaciones industriales
    (INSTITUTO DE TECNOLOGIA, 2014) CASTRO, Andy Oliveira; BEZERRA, Ulysses Henrique; LEITE, Jandecy Cabral; AZEVEDO, Marcelo da Silva Sousa; José Antônio da Silva Souza
    This paper proposes a new methodology for multi-criteria optimization in modular chip mounters using the NSGA-II genetic algorithm. Fitness functions were modeled, and a multi-criteria optimization tool was created based on machine functions and constraints. The same approach can be applied to other types of machines to support decision-making in industrial environments, aiming at efficiency and cost reduction.
  • Imagem de Miniatura
    Item
    Um Algoritmo Evolutivo para Aplicação na Compensação da Potência Reativa em Redes de Distribuição de Energia Elétrica
    (INSTITUTO DE TECNOLOGIA, 2017) AZEVEDO, Alysson Roberto; AZEVEDO, Manoel S. Santos; LEITE, Jandecy Cabral; BEZERRA, Ubiratan Holanda; ABRIL, Ignacio Pérez; Prof. Dr. Carlos Tavares da Costa Júnior
    This article proposes the use of genetic algorithms for the multi-objective optimization of reactive power compensation in electric power distribution networks. The method aims to locate and size compensation units, such as capacitor banks and passive filters, to maximize economic benefits and maintain power quality indices according to Brazilian standards. The study includes the analysis of a real case in the Manaus Industrial Pole (PIM), demonstrating the approach's effectiveness in scenarios with low and high harmonic penetration.