PPG.EGPSA/ITEGAM

URI permanente desta comunidadehttps://rigalileo.itegam.org.br/handle/123456789/1

A comunidade dispõe da produção técnica e científica do Programa de Pós-graduação em Engenharia, Gestão de Processos, Sistema e Ambiental (PPG.EGPSA) do Instituto de Tecnologia e Educação Galileo da Amazônia (ITEGAM), fruto da atividade de pesquisa e desenvolvimento (P&D). É possível acessar os trabalhos de conclusão do programa de pós-graduação, artigos e livros vinculados a pesquisa, desenvolvimento, inovação e extensão.

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 10 de 80
  • Imagem de Miniatura
    Item
    Análise de Viabilidade Econômico-financeira e de Maturidade para Implementação de Conceitos Indústria 4.0
    (Instituto de Tecnologia e Educação Galileo da Amazônia, 2025) TAHE, Thyago Mileo; CAD, Sandra Viana; NASCIMENTO, Manoel Henrique Reis
    The adoption of Industry 4.0 technologies and concepts has proven to be an effective strategy for increasing the competitiveness of industrial corporations. However, many industries still face difficulties in assessing, in a simple yet structured manner, both the economic and financial viability and their level of maturity for adopting these technologies. This research aimed to develop a simplified model capable of analyzing, in an integrated manner, the financial viability and the level of organizational maturity for Industry 4.0 technologies implementation of industries in the electronics sector. The proposed model combines Return on Investment (ROI), a traditional tool for analyzing economic and financial viability, with TOE (Technology, Organization and Environment), a method for assessing maturity for adopting new technologies. The study carried out a case study of an electronics industry in the Industrial District of Manaus. This industry has already begun its technological transition to Industry 4.0 but has not previously applied any feasibility analysis method. The results of this case study indicate that the investment has a highly positive return, and that the organization is at an appropriate level to continue implementing Industry 4.0 technologies.
  • Imagem de Miniatura
    Item
    Desenvolvimento de um sistema inteligente para secagem e cura autônoma na fabricação de produtos autoadesivos
    (Instituto de Tecnologia e Educação Galileo da Amazônia, 2025) SOUZA, Raimundo Alberto Farias de; SANTOS, Eliton Smith dos
    The production of reflective strips requires high precision and efficiency, especially for traffic signage and automotive applications. However, traditional drying and curing methods for chemical layers, such as paints and varnishes, rely on long outdoor periods, compromising product quality and reducing productivity. This study proposes the development of an integrated hardware and software model that allows automatic detection of the curing level, using controlled light radiation sources to accelerate the drying process and ensure greater uniformity. The research includes the creation of a controlled environment prototype and a Human-Machine Interface (HMI) monitoring system to optimize industrial production. The theoretical foundation is based on the application of ultraviolet (UV) photopolymerization technology, aiming to improve product quality, production efficiency, and process sustainability.
  • Imagem de Miniatura
    Item
    Automation and Intelligent Control in Drying and Curing of Paints and Varnishes: Application of Industry 4.0
    (Instituto de Tecnologia e Educação Galileo da Amazônia, 2025) SOUZA, Raimundo Alberto Farias de; SANTOS, Eliton Smith dos
    This study investigates the technologies, methods and challenges involved in drying and curing paints and varnishes applied to reflective strips, with emphasis on Industry 4.0-based solutions. It proposes an integrated hardware–software model for automatic detection of curing level through light radiation. A controlled-environment prototype and real-time control system aim to optimize the process, accelerate UV photopolymerization and improve product quality.
  • Imagem de Miniatura
    Item
    Análise dos Desafios na Transição para Indústria 4.0: um Estudo Sobre a Integração de Sistemas de Custeio em Ambientes Automatizados
    (Instituto de Tecnologia e Educação Galileo da Amazônia, 2025) SILVA, Maeli Oliveira da; MARINELLI FILHO, Nelson
    This paper analyzes the challenges faced during the transition from traditional costing systems to absorption costing systems in the context of Industry 4.0. Through the analysis of heat maps applied to an industrial costing spreadsheet for electronic components, the study identifies and categorizes inconsistencies that reflect broader structural challenges of industrial digital transformation. The methodology was based on the application of data visualization techniques to identify null and zero values at different stages of the migration process. The results reveal seven critical categories of inconsistencies: interoperability issues, complexity in the allocation of indirect costs, implementation and maintenance costs, workforce training, real-time data management, compliance and security, and adaptation to the dynamics of Industry 4.0. It was concluded that such inconsistencies represent significant barriers to a successful transition, especially in industries with a high degree of automation. The study proposes a framework for assessing and mitigating these challenges, contributing to the literature on digital transformation in the Brazilian industrial context.
  • Imagem de Miniatura
    Item
    Técnicas da Indústria 4.0 aplicadas na melhoria do processo de corte dos terminais das baterias de íon-Lítio
    (Instituto de Tecnologia e Educação Galileo da Amazônia, 2025) MACIEL, Lincoln Fabio Luiz; NASCIMENTO, Manoel Henrique Reis; ALENCAR, David Barbosa de
    Software registration using Industry 4.0 techniques to improve the terminal cutting process in lithium-ion batteries, developed in C++ and focused on industrial applications in areas AD-06, IN-01, and IN-05.
  • Imagem de Miniatura
    Item
    Aplicação de Inferência Fuzzy Para Tomada de Decisão em Processos de SMT
    (Instituto de Tecnologia e Educação Galileo da Amazônia, 2025) LEITE, Herbety Lima; NASCIMENTO, Manoel Henrique Reis; ALENCAR, David Barbosa de; BRITO JUNIOR, Jorge de Almeida
    Software developed in Python applying fuzzy inference for decision-making processes in SMT (Surface-Mount Technology), targeting industrial process optimization. The registration is recognized under Brazilian intellectual property law and categorized within engineering and automation domains.
  • Imagem de Miniatura
    Item
    Sistema Inteligente para monitoramento de subestações elétricas integrado à plataforma SGE: uma aplicação da Indústria 4.0
    (Instituto de Tecnologia e Educação Galileo da Amazônia, 2025) SANTOS JUNIOR, Hélio Andrade dos; NASCIMENTO, Manoel Henrique Reis; ALENCAR, David Barbosa de
    Python-based software developed for intelligent monitoring of electrical substations. Integrated with the SGE platform, it provides functionalities tailored for Industry 4.0 applications, enabling automation, real-time data acquisition, and remote diagnostics of critical infrastructure. Classified under electrical engineering and industrial automation.
  • Imagem de Miniatura
    Item
    Sistema inteligente para detecção de falhas utilizando algoritmo de Árvore de Decisão
    (Instituto de Tecnologia e Educação Galileo da Amazônia, 2025) PENEDO, Jorge Eduardo Santos; PALADINI, Edson Pacheco; SILVA, Carlos Américo de Souza; LEITE, Jandecy Cabral
    Python-based software employing Decision Tree algorithms to detect faults in industrial or computational systems. Designed for Industry 4.0 environments, it aims to enhance operational reliability and enable automated diagnostics.
  • Imagem de Miniatura
    Item
    Sistema inteligente para detecção de falhas utilizando algoritmo de máquina de vetores de suporte – SVM
    (Instituto de Tecnologia e Educação Galileo da Amazônia, 2025) SILVA, Carlos Américo de Souza; PALADINI, Edson Pacheco; PENEDO, Jorge Eduardo Santos; LEITE, Jandecy Cabral
    Python-based software using Support Vector Machine (SVM) algorithms for fault detection systems. Aimed at intelligent automation in industrial settings, the software enhances predictive decision-making accuracy in the context of Industry 4.0.
  • Imagem de Miniatura
    Item
    Sistema inteligente para classificação de falhas na manufatura de placas utilizando algoritmo de Machine Learning KNN
    (Instituto de Tecnologia e Educação Galileo da Amazônia, 2025) PENEDO, Jorge Eduardo Santos; PALADINI, Edson Pacheco; SILVA, Carlos Américo de Souza; LEITE, Jandecy Cabral
    Python-based software using the K-Nearest Neighbors (KNN) machine learning algorithm to classify failures in PCB manufacturing lines. Designed for Industry 4.0 environments, it aims to improve predictive failure detection accuracy in automated industrial contexts.