Artigos

URI permanente para esta coleçãohttps://rigalileo.itegam.org.br/handle/123456789/219

Artigos produzidos de convênios e parcerias com IES

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 3 de 3
  • Imagem de Miniatura
    Item
    Metodología propuesta para la optimización multicriterio mediante algoritmos genéticos en las aplicaciones industriales
    (INSTITUTO DE TECNOLOGIA, 2014) CASTRO, Andy Oliveira; BEZERRA, Ulysses Henrique; LEITE, Jandecy Cabral; AZEVEDO, Marcelo da Silva Sousa; José Antônio da Silva Souza
    This paper proposes a new methodology for multi-criteria optimization in modular chip mounters using the NSGA-II genetic algorithm. Fitness functions were modeled, and a multi-criteria optimization tool was created based on machine functions and constraints. The same approach can be applied to other types of machines to support decision-making in industrial environments, aiming at efficiency and cost reduction.
  • Imagem de Miniatura
    Item
    Optimización del proceso de montaje de componentes SMD usando algoritmo genético multiobjetivo en la industria
    (INSTITUTO DE TECNOLOGIA, 2014) CIRINO, Weverson dos Santos; MUSTAFE, Nadime; REIS, Ana; CASTRO, Anderson; BEZERRA, Ubiratan Holanda; Professora Dra. Fernanda Souza do Nascimento
    The article proposes the optimization of the assembly sequence of SMD components on printed circuit boards using a multi-objective genetic algorithm (NSGA-II). The study was conducted in an electronics industry at the Manaus Industrial Hub, showing that the proposed algorithm outperformed the traditional machine inserter optimizer, reducing assembly time by 6 seconds per board and increasing productivity by 30%. The results highlight the effectiveness of NSGA-II in solving complex industrial optimization problems.
  • Imagem de Miniatura
    Item
    Optimización Multiobjetivo de Filtros Pasivos
    (INSTITUTO DE TECNOLOGIA, 2012) LEITE, Jandecy Cabral; ABRIL, Ignacio Pérez; TOSTES, Maria Emilia de Lima; OLIVEIRA, Roberto Celio Limão de; MAGALHÃES, Edilson Marques
    Different approaches have been used to formulate the problem of passive filter design, classified into single or multi-objective formulations. While previous contributions solve the multi-objective problem by minimizing a single objective function composed of a weighted sum of sub-objectives, this work uses the Non-dominated Sorting Genetic Algorithm (NSGA-II) to address the problem. The developed program determines the number, location, configuration, and parameters of passive filters required to obtain non-dominated optimal solutions, considering four predefined filter types. The solution of a practical example demonstrates the effectiveness of the proposed procedure.